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Vignette summary

A new R package is presented, joineRML, which extends the ubiquitous joint model of a single longitudinal

measurement outcome and and an event time to the multivariate case of multiple longitudinal outcome types.

In this vignette, we outline the technical details of the underlying model, estimation algorithm, and ancillary

calculations. A separate vignette is available that speci�cally focuses on application in R.
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1 Model and notation

For each subject i = 1, . . . , n, yi = (y⊤i1, . . . , y
⊤
iK) is the K-variate continuous outcome vector, where each

yik denotes an (nik × 1)-vector of observed longitudinal measurements for the k-th outcome type: yik =

(yi1k, . . . , yinikk)
⊤. Each outcome is measured at observed (possibly pre-speci�ed) times tijk for j = 1, . . . , nik,

which can di�er between subjects and outcomes. Additionally, for each subject there is an event time T ∗
i ,

which is subject to right censoring. Therefore, we observe Ti = min(T ∗
i , Ci), where Ci corresponds to a

potential censoring time, and the failure indicator δi, which is equal to 1 if the failure is observed (T ∗
i ≤ Ci)

and 0 otherwise. We assume that both censoring and measurement times are non-informative.

The model we describe is an extension of the model proposed by Henderson et al. [1] to the case of

multivariate longitudinal data. The model posits an unobserved or latent zero-mean (K+1)-variate Gaussian

process that is realised independently for each subject, Wi(t) =
{
W

(1)
1i (t), . . . ,W

(K)
1i (t),W2i(t)

}
. This latent

process subsequently links the separate sub-models.

The multivariate longitudinal data sub-model, also referred to as the measurement model in [1], is given

by

yik(t) = µik(t) +W
(k)
1i (t) + εik(t), (1)

where µik(t) is the mean response, and εik(t) is the model error term, which we assume to be independent

and identically distributed normal with mean 0 and variance σ2
k. We assume the mean response is speci�ed

as a linear model

µik(t) = x⊤
ik(t)βk, (2)

where xik(t) is a pk-vector of (possibly) time-varying covariates with corresponding �xed e�ect terms βk.

W
(k)
1i (t) is speci�ed as

W
(k)
1i (t) = z⊤ik(t)bik, (3)

where zik(t) is an rk-vector (rk ≤ pk) of (possibly) time-varying covariates with corresponding subject-and-

outcome random e�ect terms bik, which follow a zero-mean multivariate normal distribution with (rk × rk)-

variance-covariance matrix Dkk. To account for dependence between the di�erent longitudinal outcome

types, we let Cov(bik, bil) = Dkl for k ̸= l. Furthermore, we assume εik(t) and bik are uncorrelated, and

that the censoring times are independent of the random e�ects; both are standard modelling assumptions.

These distributional assumptions together with the model given by (1)�(3) is equivalent to the multivariate

extension of the Laird and Ware [2] mixed linear e�ects model. Henderson et al. [1] note that more �exible

speci�cations of W
(k)
1i (t) can be used, including, for example, stationary Gaussian processes. We do not

consider these cases here.

The time-to-event sub-model, also referred to as the intensity process model in [1], is given by the hazard

function

λi(t) = λ0(t) exp
{
v⊤i (t)γv +W2i(t)

}
, (4)

where λ0(·) is an unspeci�ed baseline hazard function, and vi(t) is a q-vector of (possibly) time-varying

covariates with corresponding �xed e�ect terms γv. Conditional on Wi(t) and the observed covariate data,

the separate data generating processes are conditionally independent. To establish a latent association, we

specify W2i(t) as a linear combination of
{
W

(1)
1i (t), . . . ,W

(K)
1i (t)

}

W2i(t) =

K∑
k=1

γykW
(k)
1i (t),
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where γy = (γy1, . . . , γyK) are the joint model association parameters. To emphasise the dependence of

W2i(t) on the random e�ects, we will explicitly write it as W2i(t, bi) from here onwards. As noted above for

W
(k)
1i (t), W2i(t) can also be �exibly extended, for example to include subject-speci�c frailty e�ects [1].

2 Estimation

2.1 Likelihood

For each subject, collect covariate data from di�erent outcome types and measurement times together, de-

noted as

Xi =


Xi1 · · · 0
...

. . .
...

0 · · · XiK

 , Zi =


Zi1 · · · 0
...

. . .
...

0 · · · ZiK

 ,

where Xik =
(
X⊤

i1k, . . . , X
⊤
inikk

)
is an (nik × pk)-design matrix, with the j-th row corresponding to the

pk-vector of covariates measured at time tijk. The notation similarly follows for Zik. Also, collect variance-

covariance terms for the random e�ects and error terms together, denoted as

D =


D11 · · · D1K

...
. . .

...

D⊤
1K · · · DKK

 , Σi =


σ2
1Ini1 · · · 0
...

. . .
...

0 · · · σ2
KIniK

 ,

where In denotes an n× n identity matrix. We further de�ne β = (β⊤
1 , . . . , β⊤

K) and bi = (b⊤i1, . . . , b
⊤
iK). We

can then rewrite the longitudinal data sub-model as

yi | bi, β,Σi ∼ N(Xiβ + Zibi,Σi),

with bi |D ∼ N(0, D).

For the estimation, we will assume that the covariates in the time-to-event model are time-independent,

i.e. vi(t) ≡ vi. Extensions of the estimation procedure for time-varying covariates are outlined in Rizopoulos

[3]. The observed data likelihood is given by

n∏
i=1

(∫ ∞

−∞
f(yi | bi, θ)f(Ti, δi | bi, θ)f(bi | θ)dbi

)
(5)

where θ = (β⊤, vech(D), σ2
1 , . . . , σ

2
K , λ0(t), γ

⊤
v , γ⊤

y ) is the collection of unknown parameters that we want to

estimate, and

f(yi | bi, θ) =

(
K∏

k=1

(2π)−
nik
2

)
|Σi|−

1
2 exp

{
−1

2
(yi −Xiβ − Zibi)

⊤Σ−1
i (yi −Xiβ − Zibi)

}
,

f(Ti, δi | bi; θ) =
[
λ0(Ti) exp

{
v⊤i γv +W2i(Ti, bi)

}]δi
exp

{
−
∫ Ti

0

λ0(u) exp
{
v⊤i γv +W2i(u, bi)

}
du

}
,

f(bi | θ) = (2π)−
r
2 |D|− 1

2 exp

{
−1

2
b⊤i D

−1bi

}
,

where r =
∑K

k=1 rk is the total dimensionality of the random e�ects variance-covariance matrix.
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2.2 EM algorithm

We determine maximum likelihood estimates of the parameters θ using the expectation-maximisation (EM)

algorithm [4], by treating the random e�ects bi as missing data. This algorithm has been described by

Wulfsohn and Tsiatis [5] and Ratcli�e et al. [6] in the context of univariate data joint modelling, and by

Lin et al. [7] for multivariate data joint modelling. Starting from an initial estimate of the parameters, the

procedure involves iterating between the following two steps until convergence is achieved.

1. E-step. At the m-th iteration, we compute the expected log-likelihood of the complete data conditional

on the observed data and the current estimate of the parameters.

Q(θ | θ̂(m)) =

n∑
i=1

E
{
log f(yi, Ti, δi, bi | θ)

}
,

=

n∑
i=1

∫ ∞

−∞

{
log f(yi, Ti, δi, bi | θ)

}
f(bi |Ti, δi, yi; θ̂

(m))dbi

Here, the complete-data likelihood contribution for subject i is given by the integrand of (5).

2. M-step. We maximise Q(θ | θ̂(m)) with respect to θ. namely,

θ̂(m+1) = arg max
θ

Q(θ | θ̂(m))

The updates require expectations about the random e�ects be calculated of the form E
[
h(bi) |Ti, δi, yi; θ̂

(m)
]
,

which, in the interests of brevity, we denote here onwards as E [h(bi)] in the update estimates. This expectation

is conditional on the observed data (Ti, δi, yi) for each subject, the covariates (including measurement times)

(Xi, Zi, vi), which are implicitly dependent, and an estimate of the model parameters θ.

2.2.1 M-step details

The M-step estimators naturally follow from Wulfsohn and Tsiatis [5] and Lin et al. [7]. The baseline hazard

is estimated in closed-form using the Breslow estimator, with jump size:

λ̂0(t) =

∑n
i=1 δiI(Ti = t)∑n

i=1 E
[
exp

{
v⊤i γv +W2i(t, bi)

}]
I(Ti ≥ t)

, (6)

which is only evaluated a distinct observed event times, tj (j = 1, . . . , J), where I(A) denotes an indicator

function that takes the value 1 if event A occurs, and zero otherwise. Updates for β, D, and σ2
k (for
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k = 1, . . . ,K) are also given in closed-form as:

β̂ =

(
n∑

i=1

X⊤
i Σ−1

i Xi

)−1( n∑
i=1

X⊤
i Σ−1

i (yi − ZiE[bi])

)
,

=

(
n∑

i=1

X⊤
i Xi

)−1( n∑
i=1

X⊤
i (yi − ZiE[bi])

)
,

σ̂2
k =

1∑n
i=1 nik

n∑
i=1

E
{
(yik −Xikβk − Zikbik)

⊤(yik −Xikβk − Zikbik)
}
,

=
1∑n

i=1 nik

n∑
i=1

{
(yik −Xikβk)

⊤(yik −Xikβk − 2ZikE[bik]) + trace
(
Z⊤
ikZikE[bikb⊤ik]

)}
, and

D̂ =
1

n

n∑
i=1

E
[
bib

⊤
i

]
.

The simpli�cation in the estimate for β̂ derives from Xi and Σi being block-diagonal, with the latter being

diag(σ2
1Ini1

, . . . , σ2
KIniK

). The updates for γv and γy are not available in closed-form, so are updated jointly

using a one-step multidimensional Newton-Raphson algorithm as

γ̂(m+1) = γ̂(m) + I
(
γ̂(m)

)−1

S
(
γ̂(m)

)
,

where γ̂(m) denotes the value of γ = (γ⊤
v , γ⊤

y ) at the current iteration, S
(
γ̂(m)

)
is the corresponding score

function, and I
(
γ̂(m)

)
is the observed information matrix, which is equal to the derivative of the negative

score function. Further details of this update are given in Appendix A.

2.2.2 E-step details

We calculate the conditional expectation of a function of the random e�ects as

E
[
h(bi) |Ti, δi, yi; θ̂

]
=

∫∞
−∞ h(bi)f(bi | yi; θ̂)f(Ti, δi | bi; θ̂)dbi∫∞

−∞ f(bi | yi; θ̂)f(Ti, δi | bi; θ̂)dbi
, (7)

where f(Ti, δi | bi; θ̂) is given by (14), and f(bi | yi; θ̂) is calculated from multivariate normal distribution

theory as

bi | yi, θ ∼ N
(
Ai

{
Z⊤
i Σ−1

i (yi −Xiβ)
}
, Ai

)
, (8)

where Ai =
(
Z⊤
i Σ−1

i Zi +D−1
)−1

. The derivation1 is given in Wulfsohn and Tsiatis [5] and Lin et al. [7].

Gaussian quadrature, notably Gauss-Hermite quadrature, is a standard approach for evaluating the inte-

grals in this estimation approach. However, for multivariate longitudinal data, the additional random e�ects

required is commensurate with an exponential growth in the number of quadrature points at which the inte-

grand must be evaluated. Therefore, we use Monte Carlo sampling methods to evaluate the integrals, which

was also used by Lin et al. [7]. For N Monte Carlo sample draws, {b(1)i , b
(2)
i , . . . , b

(N)
i }, (7) is approximated

1The formulae given in Wulfsohn and Tsiatis [5] and Lin et al. [7] are equivalent, which can be seen by applying the Woodbury
matrix identity.
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by the ratio of the sample means for h(bi)f(Ti, δi | bi; θ̂) and f(Ti, δi | bi; θ̂) evaluated at these values. Namely,

E
[
h(bi) |Ti, δi, yi; θ̂

]
≈

1
N

∑N
d=1 h

(
b
(d)
i

)
f
(
Ti, δi | b(d)i ; θ̂

)
1
N

∑N
d=1 f

(
Ti, δi | b(d)i ; θ̂

) . (9)

As proposed by Henderson et al. [1], we will use antithetic simulation for variance reduction in the Monte

Carlo integration. Instead of directly sampling from (8), we sample Ω ∼ N(0, Ir) and obtain the pairs

Ai

{
Z⊤
i Σ−1

i (yi −Xiβ)
}
± CiΩ,

where Ci is the Cholesky decomposition of Ai such that CiC
⊤
i = Ai. Therefore we only need to draw N/2

samples using this approach, and by virtue of the negative correlation between the pairs, it leads to a smaller

variance in the sample means taken in (9) than would be obtained from N independent simulations. The

choice of N is described below.

2.2.3 Initial values

The EM algorithm requires that initial parameters are speci�ed, namely θ̂(0). By choosing values close to

the maximizer, the number of iterations required to reach convergence will be reduced.

For the time-to-event sub-model, a quasi-two-stage model is �tted when the measurement times are

balanced., i.e. when tijk = tij ∀k That is, we �t separate LMMs for each longitudinal outcome as per (1),

ignoring the correlation between di�erent outcomes. This is straightforward to implement using standard

software. From the �tted models, the best linear unbiased predictions of the separate model random e�ects

are used to estimate each W
(k)
1i (t) function. These estimates are then included as time-varying covariates

in a Cox regression model, alongside any other �xed e�ect covariates, which can be straightforwardly �tted

using standard software. In the situation that the data are not balanced, i.e. when tijk ̸= tij ∀k, then we �t

a standard Cox proportional hazards regression model for the baseline covariates, and set γyk = 0 ∀k.
For the longitudinal data sub-model, when K > 1 we �rst �nd the maximum likelihood estimate of

{β, vech(D), σ2
1 , . . . , σ

2
K} by running an EM algorithm for the multivariate linear mixed model. The E- and

M-step updates are available in closed form, and the initial parameters for this EM algorithm are available

from the separate LMM �ts. As these are estimated using an EM rather than MCEM algorithm, we can

specify a stricter convergence criterion on the estimates.

2.2.4 Convergence and stopping rules

Two standard stopping rules for the deterministic EM algorithm used to declare convergence are the relative

and absolute di�erences, de�ned as

∆
(m+1)
rel

= max

{
|θ̂(m+1) − θ̂(m)|

|θ̂(m)|+ ϵ1

}
< ϵ0, and (10)

∆
(m+1)
abs

= max
{
|θ̂(m+1) − θ̂(m)|

}
< ϵ2 (11)

respectively, for some appropriate choice of ϵ0, ϵ1, and ϵ2. For reference, the JM package implements the

relative di�erence stopping rule (in combination with another rule based on relative change in the likelihood),

whereas the joineR package implements the absolute di�erence stopping rule.
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The choice of N and the monitoring of convergence are con�ated when applying a Monte Carlo EM algo-

rithm (MCEM), and a dynamic approach is required. As noted by Wei and Tanner [8], it is computationally

ine�cient to use a large N in the early phase of the MCEM algorithm when the parameter estimates are

likely to be far from the maximizer. On the �ip side, as the parameter estimates approach the maximizer,

the above stopping rules will fail as the changes in parameter estimates will be swamped by Monte Carlo

error. Therefore, it has been recommended that one increase N as the estimate moves towards the maxi-

mizer. Although this might be done subjectively [9] or by pre-speci�ed rules [10], an automated approach is

preferable. Booth and Hobert [11] proposed an update rule based on a con�dence ellipsoid for the maximizer

at the (m + 1)-th iteration, calculated using an approximate sandwich estimator for the maximizer, which

accounts for the Monte Carlo error at each iteration. This approach requires additional variance estimation

at each iteration, therefore we opt for a simpler approach described by Ripatti et al. [12]. We calculate a

coe�cient of variation at the (m+ 1)-th iteration as

cv(∆
(m+1)
rel

) =
sd(∆

(m−1)
rel

,∆
(m)
rel

,∆
(m+1)
rel

)

mean(∆
(m−1)
rel

,∆
(m)
rel

,∆
(m+1)
rel

)
,

where ∆
(m+1)
rel

is given by (10), and sd(·) and mean(·) are the sample standard deviation and mean functions,

respectively. If cv(∆
(m+1)
rel

) > cv(∆
(m)
rel

), thenN := N+⌊N/δ⌋, for some small positive integer δ. Typically, we

run the MCEM algorithm with a small N (e.g. a default of 50K iterations) before implementing this update

rule in order to get into the approximately correct parameter region. Appropriate values for other parameters

will be application speci�c, however we have found δ = 3, N = 100, ϵ1 = 0.001, and ϵ0 = ϵ2 = 0.005 to

deliver reasonably accurate estimates.

As the monotonicity property is lost due to the Monte Carlo integrations in MCEM, convergence might be

prematurely declared due to stochasticity if the ϵ values are too large. To reduce the chance of this occurring,

we require that the stopping rule is satis�ed for 3 consecutive iterations [11, 12]. However, in any case, trace

plots should be inspected to con�rm convergence is appropriate.

2.2.5 Likelihood evaluation

The observed data likelihood is calculated following the observation by Henderson et al. [1] that it can be

rewritten as
n∏

i=1

f(yi | θ̂)
(∫ ∞

−∞
f(Ti, δi | bi, θ̂)f(bi | yi, θ̂)dbi

)
,

where marginal distribution f(yi | θ) is a multivariate normal density with mean Xiβ and variance-covariance

matrix Σi+ZiDZ⊤
i , f(bi | yi, θ) is given by (8), and θ̂ is the maximum likelihood estimate determined from the

EM algorithm. Once calculated, the Akaike information criterion (AIC) and Bayesian information criterion

(BIC) are straightforwardly calculated, which are useful for model selection.

2.3 Standard error estimation

We consider two standard error (SE) estimators:

1. Approximate SEs. These are estimated by I
−1/2
e (θ̂), where Ie(θ) is the observed empirical information

matrix [13], given by

Ie(θ) =

n∑
i=1

si(θ)s
⊤
i (θ)−

1

n
S(θ)S⊤(θ), (12)
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si(θ) is the conditional expectation of the complete-data score function for subject i, and S(θ) is the

score de�ned by S(θ) =
∑n

i=1 si(θ). At the maximizer, S(θ̂) = 0, meaning that the right hand-side of

(12) is zero. Due to the Monte Carlo error in the MCEM algorithm, this will not be exactly zero, and

therefore we include it in the calculations.

Owing to the estimation approach described in Appendix A, we calculate approximate SEs for θ−λ0
=

(β⊤, vech(D), σ2
1 , . . . , σ

2
K , γ⊤) using the pro�le score vectors

si

(
θ−λ0

, λ̂0(t | θ−λ0
)
)
,

where λ0(t) is substituted by λ̂0(t), which is a function of γ (and implicitly, the other parameters via

the conditional expectation in the E-step, (7)) given by (6). Therefore, we do not calculate approximate

SEs for the baseline hazard; however, this is generally not of inferential interest, hence the application

of the Cox model formulation in the �rst place.

2. Bootstrap estimated SEs. These are estimated by sampling n subjects with replacement and re-

labelling the subjects with indices i′ = 1, . . . , n. We then re-�t the model to the bootstrap-sampled

dataset. It is important to note that we re-sample patients, not individual data points. This is repeated

B-times. For each iteration, we extract the model parameter estimates for (β⊤, vech(D), σ2
1 , . . . , σ

2
K , γ⊤

v , γ⊤
y ).

Note that as the the event times might be tied, the dimension of λ0(t) evaluated at the unique failure

times will vary for each iteration; therefore, for simplicity, we do not consider standard error estimates

of the baseline hazard. When B is su�ciently large, the SEs can be estimated from the estimated

coe�cients. Alternatively, 100(1 − α)%-con�dence intervals can be estimated from the the 100α/2-th

and 100(1− α/2)-th percentiles.

From a theoretical perspective, the preferred SE estimates are those using the bootstrap method, owing to

the fact that λ̂0(t) will generally be a high-dimensional vector, which might lead to numerical di�culties

in the inversion of the observed information matrix [3], and also because the pro�le likelihood estimates

based on the usual observed information matrix approach are known to be underestimated [14]. The reason

for this is that the pro�le estimates are implicit, since the posterior expectations, given by (7), depend on

the parameters being estimated, including λ0(t) [3, page 67]. On the �ip side, the bootstrap estimates are

computationally expensive. Nonetheless, at the model development stage, it is often of interest to gauge

the strength of association of model covariates. For this reason, we propose use of the approximate SE

estimator, which were also calculated by Lin et al. [7]. If computationally feasible, however, we recommend

that bootstrap SEs are also estimated and contrasted to the approximate ones. We also note that recently

it has been suggested that bootstrap estimators overestimate the SEs; e.g. Xu et al. [15, p. 740] and Hsieh

et al. [14, p. 1041].

As noted earlier, SE estimates other than those deriving from bootstrap estimation are expected to be

underestimated. On the other hand, the additional Monte Carlo error will likely lead to larger standard

error estimates, whether using either the approximate and bootstrap approach. The consequences of these

competing factors operating to both in�ate and de�ate the standard error estimators is not fully understood,

and therefore they must be interpreted with a degree of caution.

3 Simulation

To assess properties of the model estimation algorithm, for example bias and coverage, it is necessary to

simulate data from joint models of multivariate longitudinal data and time-to-event data. We consider
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simulation from two models with either

1. W
(k)
1i (t) = bik,0 (random-intercepts model), or

2. W
(k)
1i (t) = bik,0 + b1k,1t (random-intercepts and random-slopes model).

Conditional on model parameters, simulation of complete longitudinal data for subjects is trivial by sampling

from multivariate normal distributions. In practice, it is preferable to simulate data for �xed time points

0, 1, . . . , Tmax.

The event times are simulated from an exponential distribution in the case of the random-intercepts

model, or Gompertz distribution in the case of a random-intercepts and random-slopes model. In the case

of (1), this is equivalent to simulation of event times conditional on known baseline covariates. In the case

of (2), this is equivalent to simulation of event times conditional on a linear time-varying covariate. The

approaches to simulating event times under each of these situations is reported in Bender et al. [16] and

Austin [17], respectively. To illustrate (2), we �rst note that we can re-write (4) as

λ0(t) exp

{(
v⊤i (t)γv +

K∑
k=1

γykbik,0

)
+

(
K∑

k=1

γykbik,1

)
t

}
≡ λ0(t) exp {si + wit} .

Hence, using the formula (6) from Austin [17], we can simulate an event time as

Ti =
1

wi + θ0
log

(
1− (wi + θ0) log(ui))

θ1 exp(si)

)
,

where ui ∼ U(0, 1), and θ0 > 0 and −∞ < θ1 < ∞ are the scale and shape parameters of the Gompertz

distribution. See Austin [17] for a derivation of this formula. For all simulations, we also consider one

continuous covariate and one binary covariate, which can be included in both sub-models.

In practice, we will also observe independent right-censoring. For this, we simulate a censoring time Ci

from an exponential distribution with scale λ > 0, and return the observed data of follow-up time min(Ti, Ci)

and event indicator I(Ti ≤ Ci). Additionally, as studies are generally terminated after a �xed follow-up

period, we will have a truncation time.
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A Appendix: Score equations

From (5), the expected complete-data log-likelihood is given by

n∑
i=1

∫ ∞

−∞

{
log f(yi, Ti, δi, bi | θ)

}
f(bi |Ti, δi, yi, θ̂

(m))dbi

where the expectation is taken over the conditional random e�ects distribution f(bi |Ti, δi, yi, θ̂
(m)).

We can decompose the complete-data log-likelihood for subject i into

log f(yi, Ti, δi, bi | θ) = log f(yi | bi, θ) + log f(Ti, δi | bi, θ) + log f(bi | θ),
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where

log f(yi | bi, θ) = −1

2

{(
K∑

k=1

nik

)
log(2π) + log |Σi|+ (yi −Xiβ − Zibi)

⊤Σ−1
i (yi −Xiβ − Zibi)

}
(13)

log f(Ti, δi | bi, θ) = δi log λ0(Ti) + δi
[
v⊤i γv +W2i(Ti, bi)

]
−
∫ Ti

0

λ0(u) exp
{
v⊤i γv +W2i(u, bi)

}
du (14)

log f(bi | θ) = −1

2

{
r log(2π) + log |D|+ b⊤i D

−1bi
}
. (15)

The update equations are then estimated according to the score equations, ∂Q(θ | θ̂(m))/∂θ. The score

equations are e�ectively given in Lin et al. [7], although there the random e�ects were hierarchically centred

about the corresponding �xed e�ect terms as part of a current values parametrisation, as well as being

embedded in a frailty Cox model, which has consequences on the score equations here. The score equations

for λ0(t), β, and σ2
k are

S(λ0(t)) =

n∑
i=1

{
δiI(Ti = t)

λ0(t)
− E

[
exp{v⊤i γv +W2i(t, bi)}

]
I(Ti ≥ t)

}
,

S(β) =

n∑
i=1

{
X⊤

i Σ−1
i (yi −Xiβ − ZiE[bi])

}
,

S(σ2
k) = − 1

2σ2
k

n∑
i=1

{
nik − 1

σ2
k

E
[
(yik −Xikβk − Zikbik)

⊤(yik −Xikβk − Zikbik)
]}

= − 1

2σ2
k

n∑
i=1

{
nik − 1

σ2
k

[
(yik −Xikβk)

⊤(yik −Xikβk − 2ZikE[bik])

+trace
(
Z⊤
ikZikE[bikb⊤ik]

)]}
,

S(D−1) =
n

2
{2D − diag(D)} − 1

2

[
2

n∑
i=1

E
[
bib

⊤
i

]
− diag

(
n∑

i=1

E
[
bib

⊤
i

])]
,

where the update for σ2
k was done by �rst rewriting (13) as

∑K
k=1 log{f(yik | bik, θ)}.

The score equations for γv and γy don't have closed-form solutions. Therefore, they are updated jointly

using a one-step multidimensional Newton-Raphson algorithm iteration. We can write the score equation for

γ =
(
γ⊤
v , γ⊤

y

)⊤
as

S(γ) =

n∑
i=1

[
δiE [ṽi(Ti)]−

∫ Ti

0

λ0(u)E
[
ṽi(u) exp{ṽ⊤i (u)γ}

]
du

]

=

n∑
i=1

δiE [ṽi(Ti)]−
J∑

j=1

λ0(tj)E
[
ṽi(tj) exp{ṽi(tj)⊤γ}

]
I(Ti ≥ tj)

 ,

where ṽi(t) =
(
v⊤i , z

⊤
i1(t)bi1, . . . , z

⊤
iK(t)biK

)
is a (q +K)-vector, and the integration over the survival process

has been replaced with a �nite summation over the process evaluated at the unique failure times, since the

non-parametric estimator of baseline hazard is zero except at observed failure times [1]. As λ0(tj) is a function

of γ, this is not a closed-form solution. Substituting λ0(t) by λ̂0(t) from (6), which is a function of γ and the

observed data itself, gives a score that is independent of λ0(t). Discussion of this in the context of univariate

joint modelling is given by Hsieh et al. [14]. A useful result is that the maximum pro�le likelihood estimator
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is the same as the maximum partial likelihood estimator [18].

The observed information matrix for γ is calculated by taking the partial derivative of the score above

(with λ0(t) substituted by λ̂0(tj) de�ned by (6)), and is given by

I(γ) ≡ − ∂

∂γ
S(γ) =

n∑
i=1

J∑
j=1

{
λ̂0(tj)I(Ti ≥ tj)E

[
ṽi(tj)ṽ

⊤
i (tj) exp{ṽ⊤i (tj)γ}

]}
−

J∑
j=1

λ̂0(tj)
2Γ(tj)∑n

i=1 δiI(Ti = tj)
.

where

Γ(tj) =

{
n∑

i=1

E
[
ṽi(tj) exp{ṽ⊤i (tj)γ}

]
I(Ti ≥ tj)

}{
n∑

i=1

E [ṽi(tj) exp{ṽi(tj)γ}] I(Ti ≥ tj)

}⊤

,

and λ̂0(t) is given by (6), which is also a function of γ. In practice, calculation of I(γ) is a computational

bottleneck. Therefore, in some situations we may want to approximate it. One approximation we consider

is a Gauss-Newton-like approximation, which is similar to the empirical information matrix, as de�ned by

(12). Hence, the one-step block update at the (m+ 1)-th EM algorithm iteration is

γ̂(m+1) = γ̂(m) + I
(
γ̂(m)

)−1

S
(
γ̂(m)

)
.
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